第13章 黑洞(1)
罗杰・彭罗斯和我在1965年和1970年之间的研讨指出,按照广义相对论,在黑洞中必定存在密度和时空曲率无穷大的奇点。这和时候开端时的大爆炸相称近似,只不过它是一个坍缩物体和航天员的时候起点罢了。在此奇点,科学定律和我们预言将来的才气都崩溃了。但是,任何留在黑洞以外的察看者,将不会遭到可预感性见效的影响,因为从奇点解缆的,不管是光还是任何其他信号,都不能达到他那儿。这个不凡的究竟导致罗杰・彭罗斯提出了宇宙监督假想,它能够被意译为:“上帝仇恨裸奇点。”换言之,由引力坍缩所产生的奇点只能产生在像黑洞如许的处所,它在那边被事件视界面子地遮住而不被外界瞥见。严格地讲,这就是所谓弱的宇宙监督假想:它使留在黑洞内里的察看者不致遭到产生在奇点处的可预感性崩溃的影响,但它对那位不幸落到黑洞里的不幸的航天员倒是爱莫能助。
实际上,它们好久今后才被探测到。
黑洞这一术语是不久之前才呈现的。1969年美国科学家约翰・惠勒,为了形象地描述起码可回溯到200年前的一个看法时,诬捏了这个名词。当时候,共有两种光实际:一种是牛顿同意的光的微粒说;另一种是光由波构成的颠簸说。我们现在晓得,这二者在实际上都是精确的。因为量子力学的波粒二象性,光既能够为是波,也能够为是粒子。在光的颠簸说中,不清楚光对引力如何呼应。但是如果光是由粒子构成的,人们能够预感,它们正如同炮弹、火箭和行星一样受引力的影响。人们起先觉得,光粒子无穷快地活动,以是引力不成能使之迟缓下来,但是罗默关于光以有限速率行进的发明意味着,引力对之可有首要效应。
1928年,一名印度研讨生――萨拉玛尼安・昌德拉塞卡――乘船来英国剑桥跟英国天文学家兼广义相对论家阿瑟・爱丁顿爵士学习。(据记录,在20世纪20年代初,有一名记者奉告爱丁顿,说他传闻天下上只要三小我能了解广义相对论。爱丁顿停顿了一下,然后答复:“我正在想这第三小我是谁?”)在从印度来英国的旅途中,昌德拉塞卡算出了在耗尽统统燃料以后,多大的恒星仍然能够对抗本身的引力而保持本身。这个思惟是说:当恒星变小时,物质粒子相互靠得非常近,而遵循泡利不相容道理,它们必须有非常分歧的速率。这使得它们相互散开并诡计使恒星收缩。是以,一颗恒星可因引力的吸引和不相容道理引发的架空达到的均衡,而保持其半径稳定,正如同在它的生命的初期引力被热均衡一样。
广义相对论方程存在一些解,我们的航天员在这些解中能够看到裸奇点:他或许能制止撞到奇点上去,相反地穿过一个“虫洞”来到宇宙的另一地区。看来这给在时空内的观光供应了大的能够性。但是不幸的是,统统这些解仿佛都是非常不稳定的;最小的滋扰,比方一个航天员的存在就会使之窜改,乃至于他还没能看到此奇点,就撞上去而闭幕了他的时候。换言之,奇点总产生在他的将来,而毫不会产生在他的畴昔。宇宙监督假想强的版本是说,在一个实际的解里,奇点老是要么全部存在于将来(如引力坍缩的奇点),要么全部存在于畴昔(如大爆炸)。我激烈地信赖宇宙监督,如许我就和加州理工学院的基帕・索恩和约翰・普勒斯基尔打赌,以为它老是建立的。因为找到了一些解的例子,在非常远处能够看得见其奇点,以是我在技术的层面上输了。如许,我必须遵循协约还清赌债,也就是必须把他们的暴露粉饰住。但是我能够宣布道义上的胜利。这些裸奇点是不稳定的:最小的滋扰就会导致这些奇点消逝,或者躲到事件视界前面去。以是它们在实际景象下不会产生。
为了了解黑洞是如何构成的,我们起首需求了解恒星的生命周期。开初,大量的气体(绝大部分为氢)受本身的引力吸引,而开端向本身坍缩而构成恒星。当它收缩时,气体原子越来越频繁地以越来越大的速率相互碰撞――气体的温度上升。最后,气体变得如此之热,乃至于当氢原子碰撞时,它们不再弹开而是聚合构成氦。如同一个受控氢弹爆炸,反应中开释出来的热使得恒星发光。这附加的热又负气体的压力降低,直到它足以均衡引力的吸引,这时气体停止收缩。这有一点像气球――内部气压试图负气球收缩,橡皮的张力试图负气球收缩,它们之间存在一个均衡。从核反应收回的热和引力吸引的均衡,使恒星在很长时候内保持这类均衡。但是,恒星终究会耗尽它的氢和其他核燃料。貌似大谬,实在不然的是,恒星初始的燃料越多,它则被越快燃尽。这是因为恒星的质量越大,它就必须越热才足以抵当引力。而它越热,它的燃料就被耗得越快。我们的太阳大抵充足再燃烧50多亿年,但是质量更大的恒星能够在1亿年这么短的时候内哄尽其燃料,这个时候标准比宇宙的春秋短很多了。当恒星耗尽了燃料,它开端变冷并收缩。随后产生的环境只要比及20世纪20年代末才初次被人们了解。
但是我们信赖,在宇宙中存在大很多的天体,比方星系的中间地区,它们遭遭到引力坍缩而产生黑洞;一名在如许的物体上面的航天员在黑洞构成之前不会被扯开。究竟上,当他达光临界半径时,不会有任何非常的感受,乃至在通过永不回返的那一点时,都没重视到它。但是,跟着这地区持续坍缩,只要在几个钟头以内,感化到他头上和脚上的引力之差会变得如此之大,乃至于再将其扯破。
几年以后,法国科学家拉普拉斯侯爵明显单独地提出了和米歇尔近似的看法。非常风趣的是,拉普拉斯只将此观点归入他的《天下体系》一书的第一版和第二版中,而在今后的版本中将其删去;或许他以为这是一个笨拙的看法。(另有,光的微粒说在19世纪变得不时髦了;仿佛统统都能够以颠簸实际来解释,而遵循颠簸实际,不清楚光究竟是否遭到引力的影响。)究竟上,因为光速是牢固的,以是在牛顿引力论中将光近似炮弹那样措置不很调和。(从空中发射上天的炮弹被引力减速,最后停止上升并折回空中;但是,一个光子必须以稳定的速率持续向上,那么,牛顿引力如何影响光呢?)直到1915年爱因斯坦提出广义相对论,才获得引力如何影响光的调和度论。乃至又过了很长时候,人们才了解这个实际对大质量恒星的含义。
朗道指出,恒星还存在另一种能够的终态。其极限质量约莫也为太阳质量的一倍或二倍,但是其体积乃至比白矮星还小很多。这些恒星是由中子和质子之间,而不是电子之间的不相容道理架空力支撑的。以是它们叫做中子星。它们的半径只要10英里摆布,密度为每立方英寸几亿吨。在第一次预言中子星时,没有任何体例去察看它。
另一方面,质量比昌德拉塞卡极限还大的恒星在耗尽其燃料时,会呈现一个很大的题目。在某种景象下,它们会爆炸或设法抛出充足的物质,使它们的质量减小到极限之下,以制止灾害性的引力坍缩。但是很难令人信赖,不管恒星有多大,这总会产生。如何晓得它必然丧失重量呢?即便每个恒星都设法落空充足多的质量以制止坍缩,如果你把更多的质量加在白矮星或中子星上,以使之超越极限,将会产生甚么?它会坍缩到无穷密度吗?爱丁顿为此感到震惊,他回绝信赖昌德拉塞卡的成果。爱丁顿以为,一颗恒星是底子不成能坍缩成一点的。这是大多数科学家的观点:爱因斯坦本身写了一篇论文,宣布恒星的体积不会收缩为零。其他科学家,特别是他之前的教员,恒星布局的首要权威――爱丁顿的敌意使昌德拉塞卡放弃了这方面的事情,而转去研讨诸如恒星团活动等其他天文学题目。但是,他之以是获得1983年诺贝尔奖,起码部分启事在于他暮年所做的关于冷恒星的质量极限的事情。
他指出,一个质量充足大并充足致密的恒星会有如此强大的引力场,乃至连光芒都不能逃逸:任何从恒星大要收回的光,在还没达到远处前就会被恒星的引力吸引返来。米歇尔表示,能够存在大量如许的恒星,固然因为从它们那边收回的光不会达到我们这里,我们不能看到它们;但是我们仍然能够感到它们引力的吸引。这恰是我们现在称为黑洞的物体。它是名副实在的――在空间中的黑的浮泛。
如果你察看一个恒星坍缩并构成黑洞时,为了了解你所看到的环境,牢记在相对论中没有绝对时候。每个观察者都有本身的时候测量。因为恒星的引力场,在恒星上或人的时候将和在远处或人的时候分歧。假定在坍缩星大要有一恐惧的航天员和恒星一起向内坍缩。他遵循本身的表,每一秒钟发一信号到一个环绕着该恒星转动的航天飞船上去。在他的表的某一时候,比方11点钟,恒星刚好收缩到它的临界半径以下,此时引力场强大到没有任何东西能够逃逸出去,他的信号再也不能传到航天飞船了。跟着11点趋近,他的火伴从航天飞船上旁观会发明,从该航天员发来的一串信号的时候间隔越变越长。但是这个效应在10点59分59秒之前是非常藐小的。在收到10点59分58秒和10点59分59秒收回的两个信号之间,他们只需等候比1秒钟稍长一点的时候,但是他们必须为11点收回的信号等候无穷长的时候。遵循航天员的腕表,光波是在10点59分59秒和11点之间由恒星大要收回;从航天飞船上看,那光波被散开到无穷长的时候间隔里。在航天飞船上这一串光波到临的时候间隔变得越来越长,以是从恒星来的光鲜得越来越红、越来越淡,最后,该恒星变得如此之昏黄,乃至于从航天飞船上再也看不见它:所余下的统统只是空间中的一个黑洞。不过,此恒星持续以一样的引力感化到航天飞船上,使飞船持续环绕着构成的黑洞扭转。但是因为以下的题目,上述场景不是完整实际的。一小我分开恒星越远则引力越弱,以是感化在这位恐惧的航天员脚上的引力总比感化到他头上的大。在恒星还未收缩光临界半径而构成事件视界之前,这力的不同就足以将我们的航天员拉成意大利面条那样,乃至将他扯破!
1783年,剑桥的学监约翰・米歇尔在这个假定的根本上,于《伦敦皇家学会哲学学报》上颁发了一篇文章。
这对大质量恒星的终究归宿具有严峻的意义。如果一颗恒星的质量比昌德拉塞卡极限小,它最后会停止收缩,并且变成一种能够的终态即“白矮星”。白矮星的半径为几千英里,密度为每立方英寸几百吨。白矮星是由它物质中电子之间的不相容道理架空力支撑的。我们察看到大量如许的白矮星。环绕着天狼星转动的那颗是最早被发明的白矮星中的一个,天狼星是夜空中最亮的恒星。
但是,昌德拉塞卡认识到,不相容道理所能供应的架空力有一个极限。相对论把恒星中的粒子的最大速率差限定为光速。这意味着,当恒星变得充足麋集之时,由不相容道理引发的架空力就会比引力的感化小。昌德拉塞卡计算出,一个质量比约莫太阳质量一倍半还大的冷的恒星不能保持本身以抵当本身的引力。(这质量现在称为昌德拉塞卡极限。)苏联科学家列夫・达维多维奇・朗道差未几同时获得了近似的发明。
昌德拉塞卡指出,不相容道理不能够禁止质量大于昌德拉塞卡极限的恒星产生坍缩。但是,按照广义相对论,如许的恒星会产生甚么环境呢?1939年一名美国的年青人罗伯特・奥本海默初次处理了这个题目。但是,他所获得的成果表白,用当时的望远镜去检测不会有任何观察成果。今后,第二次天下大战插入,奥本海默本人非常用心肠处置原枪弹研制。战后,因为大部分科学家被吸引到原子和原子核标准的物理中去,因此大部分人健忘了引力坍缩的题目。但在20世纪60年代,当代技术的利用使得天文观察范围和数量大大增加,这重新激起人们对天文学和宇宙学的大标准题目的兴趣。奥本海默的事情被一些人重新发明并推行。
现在,我们从奥本海默的事情中获得一幅如许的图象:恒星的引力场窜改了光芒在时空中的途径,使之和如果没有恒星环境下的途径不一样。光锥是表示闪光从其顶端收回后在时空中传播的途径。光锥在恒星大要四周略微向内弯折。在日蚀时察看从悠远恒星收回的光芒,能够看到这类偏折征象。跟着恒星收缩,其大要的引力场变得更强大,而光锥向内偏折得更多。这使得光芒从恒星逃逸变得更加困难,对于远处的察看者而言,光芒变得更暗淡更红。最后,当恒星收缩到某一临界半径时,大要上的引力场变得如此之强,使得光锥向内偏折得这么短长,乃至于光芒再也逃逸不出去 。按拍照对论,没有东西能行进得比光还快。如许,如果光都逃逸不出来,其他东西更不成能:统统东西都会被引力场拉归去。如许,存在一个事件的调集或时空地区,光或任何东西都不成能从该地区逃逸而达到远处的察看者。现在我们将这地区称作黑洞,将其鸿沟称作事件视界,而它和刚好不能从黑洞逃逸的光芒的那些途径相重合。